Exam. Code : 211001 Subject Code : 4849

M.Sc. Mathematics ${ }^{1 t}$ Semester
 MECHANICS-I

Paper-MATH-554

Time Allowed-Three Hours] [Maximum Marks-100
Note :-Attempt FIVE questions in all, selecting at least ONE question from each section. All questions carry equal marks.

SECTION-A

1. (a) Obtain the radial and transverse components of velocity and acceleration of the motion of a particle in plane.
(b) The points (a, 2a, -a), ($-\mathrm{a},-\mathrm{a}, \mathrm{a}$), ($\mathrm{a}, \mathrm{a}, \mathrm{a})$ of a rigid body have instantaneous velocity $\left(\frac{\sqrt{3} \mathrm{v}}{2}, 0, \frac{\sqrt{3} \mathrm{v}}{2}\right),\left(\frac{-\mathrm{v}}{\sqrt{3}}, 0, \frac{-\mathrm{v}}{\sqrt{3}}\right), \quad\left(0, \frac{-\mathrm{v}}{\sqrt{3}}, \frac{\mathrm{v}}{\sqrt{3}}\right)$.

Show that the body has the line through the origin
having direction cosines $\left[\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right]$ as
instantaneous axis of rotation and that the magnitude of the angular velocity is $\frac{\mathrm{v}}{2 \mathrm{a}}$.
2. (a) A rigid body s has a spin w and a particle A of S has velocity $\overrightarrow{\mathrm{v}}$. Show that every particle P of S with velocity vector parallel to $\overrightarrow{\mathrm{w}}$ lies on the line $\overrightarrow{\mathrm{AP}}=(\overrightarrow{\mathrm{w}} \times \overrightarrow{\mathrm{v}}) \mathrm{w}^{2}+\mu \overrightarrow{\mathrm{w}}, \mu$ is arbitrary scalar.
(b) Prove that:

$$
\left.\frac{\mathrm{d} \vec{r}}{\mathrm{dt}}\right|_{\mathrm{F}}=\left.\frac{\partial \overrightarrow{\mathrm{r}}}{\partial \mathrm{t}}\right|_{\mathrm{M}}+\overrightarrow{\mathrm{w}} \times \overrightarrow{\mathrm{r}} \text {, where the symbols }
$$

have their usual meaning, use it to find the velocity components of a point in spherical polar co-ordinates.

SECTION-B

3. (a) Explain rectilinear particle motion with respect to uniform accelerated motion and resisted motion.
(b) A particle of mass m is placed on a horizontal board which is made to execute vertical simple harmonic oscillations of period T and amplitude a. If a $<\left(\mathrm{gT}^{2} / 4 \pi^{2}\right)$, show that the particle does not lose contact with the board at any time.
4. (a) A fixed wire is in the shape of the cardioid $r=a(1+\cos \theta)$, the initial line being the downward vertical. A small ring of mass m can slide on the wire and is attached to the point $\mathrm{r}=0$ of the cardioid by an elastic string of natural length a and modulus 4 mg . If the particle is released from rest when the string is horizontal, show that $\mathrm{a}^{2}(1+\cos \theta)-\mathrm{g} \cos \theta(1-\cos \theta)=0$.
(b) Show that if the moment of the resultant force about the axis \hat{a} is zero then the angular momentum $\hat{\mathrm{G}} \cdot \overrightarrow{\mathrm{H}}$ of the particle about the axis is constant.

SECTION-C

5. (a) Derive the differential equation of orbit of a particle moving under central force. Show that the inverse square law of force directed towards a fixed point always produces a conic type orbit.
(b) A particle is describing an ellipse of eccentricity e about a centre of force at a focus. Prove with the usual notation $\mathrm{v}^{2}=\mu(2 / \mathrm{r}-1 / \mathrm{a}), \mathrm{h}^{2}=\mu \mathrm{a}\left(1-\mathrm{e}^{2}\right)$ when the particle is at one end of a minor axis, its velocity is doubled. Prove that the new path is a hyperbola of eccentricity $\left(9-8 e^{2}\right)^{1 / 2}$.
6. (a) Two gravitating particles of masses m and M move under the force of their mutual attraction. Show that the centre of mass of the two particles moves with constant velocity, and that if $\overrightarrow{\mathrm{r}}$ is the position vector of m relative $M, \ddot{\vec{r}}=-\gamma(M+m) \frac{\hat{r}}{r^{3}}$, where γ is the gravitational constant. If the orbit of m relative to M is a circle of radius a described with velocity v , show that $\mathrm{v}=[\gamma(\mathrm{M}+\mathrm{m}) / \mathrm{a}]^{1 / 2}$.
(b) Write a note on elliptic harmonic motion.

SECTION-D

7. (a) Determine the moment of inertia of the distribution about the axis through O having direction cosines $[\lambda, \mu, v]$ in terms of there D.Cs. and A, B, ..F.
(b) Prove that there exists three principal directions at a point of a rigid body which are real and mutually orthogonal.
8. (a) State and prove the necessary and sufficient conditions for the two systems to be equimomental.
(b) Show that in two-dimensional mass distributions, the principal directions with usual notations are given by $\tan 2 \alpha=\frac{2 F}{B-A}$.
